Éléments graphiques

XXIII.I.I. Gestion classique de la mémoire en C++

gtkmm autorise le programmeur à contrôler la durée de vie (c'est-à-dire, la construction et la destruction) de tout élément graphique de la même manière que celle de n'importe quel objet C++. Cette polyvalence autorise, soit l'utilisation des opérateurs new et delete pour créer et détruire les objets de manière dynamique, soit l'utilisation de données membres de classes régulières (qui sont détruites automatiquement quand la classe est détruite), soit l'utilisation d'instances locales (qui sont détruites dès que l'instance est hors de portée). Certaines boîtes à outils GUI C++ n'offrent pas cette souplesse : elles restreignent le programmeur à un sous-ensemble des fonctionnalités de gestion mémoire du C++.

Voici quelques exemples de gestion traditionnelle de la mémoire en C++ :

XXIII.I.I.I. Éléments graphiques à portée de classe

Si un programmeur n'a pas besoin d'allocation dynamique de mémoire, il peut se servir d'éléments graphiques automatiques à portée de classe. Un des avantages des éléments graphiques automatiques à portée de classe est que la gestion de la mémoire est regroupée en un seul endroit. Le programmeur ne risque pas de fuites de mémoire en oubliant un delete sur un élément graphique.

The primary disadvantage of using class scope widgets is revealing the class implementation rather than the class interface in the class header.

#include <gtkmm/button.h>
#include <gtkmm/window.h>
class Foo : public Gtk::Window
{
private:
  Gtk::Button theButton;
  // will be destroyed when the Foo object is destroyed
};

XXIII.I.I.II. Éléments graphiques à portée de fonction

If a programmer does not need a class scope widget, a function scope widget may also be used. The advantages to function scope over class scope are the increased data hiding and reduced dependencies.

{
  Gtk::Button aButton;
  aButton.show();
  ...
  app->run();
}

XXIII.I.I.III. Allocation dynamique avec new et delete

Usually, the programmer will prefer to allow containers to automatically destroy their children by creating them using Gtk::make_managed() (see below). This is not strictly required, as the new and delete operators may also be used, but modern C++ style discourages those in favour of safer models of memory management, so it is better to create widgets using Gtk::make_managed() and let their parent destroy them, than to manually perform dynamic allocation.

auto pButton = new Gtk::Button("Test");

// do something useful with pButton

delete pButton;
Here, the programmer deletes pButton to prevent a memory leak.

XXIII.I.II. Éléments graphiques gérés

Alternatively, you can let a widget's container control when the widget is destroyed. In most cases, you want a widget to last only as long as the container it is in. To delegate the management of a widget's lifetime to its container, create it with Gtk::make_managed() and then pack it into its container with Gtk::Box::append() or a similar method. Now the widget will be destroyed whenever its container is destroyed.

XXIII.I.II.I. Dynamic allocation with make_managed() and append()

gtkmm provides ways including the make_managed() function and Gtk::Box::append() method to simplify creation and destruction of widgets whose lifetime can be managed by a parent.

Every widget except a top-level window must be added to a parent container in order to be displayed. The manage() function marks a widget so that when that widget is added to a parent container, said container becomes responsible for deleting the widget, meaning the user no longer needs to do so. The original way to create widgets whose lifetime is managed by their parent in this way was to call manage(), passing in the result of a new expression that created a dynamically allocated widget.

However, usually, when you create such a widget, you will already know that its parent container should be responsible for destroying it, In addition, modern C++ style discourages use of the new operator, which was required when passing a newly created widget to manage(). Therefore, gtkmm has added make_managed(), which combines creation and marking with manage() into a single step. This avoids you having to write new, which is discouraged in modern C++ style, and more clearly expresses intent to create a managed widget.

MyContainer::MyContainer()
{
  auto pButton = Gtk::make_managed<Gtk::Button>("Test");
  append(*pButton); //add *pButton to MyContainer
}

Now, when objects of type MyContainer are destroyed, the button will also be deleted. It is no longer necessary to delete pButton to free the button's memory; its deletion has been delegated to the MyContainer object.

Note that if you never added the widget to any parent container, or you did but later Gtk::Container::remove()d it from said parent, gtkmm restores the widget’s lifetime management to whatever state it had before manage() was called, which typically means that the responsibility for deleteing the widget returns to the user.

Of course, a top-level container will not be added to another container. The programmer is responsible for destroying the top-level container using one of the traditional C++ techniques. For instance, your top-level Window might just be an instance in your main() function.